Power Systems-I

Course Code	19EE3601	Year	III	Semester	Π
Course Category	Program core	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	BEEE
Continuous Internal Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100

Course Outcomes						
	Upon successful completion of the course, the student will be able to					
CO1	Understand the layout and working of various power plants, types of transmission lines and tariff (L2)					
CO2	Estimate the transmission line parameters, mechanical design parameters of overhead lines. (L3)					
CO3	Analyse the performance of transmission lines and Economic Aspects of power system (L4)					
CO4	Demonstrate the effect of corona and importance of load sharing (L3)					

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3:High, 2: Medium, 1:Low)									es &			
	PO1	PO2	PO3	PO4	PO5		PO7			PO12		PSO2
CO1	2											
CO2	2	3									1	1
CO3	2	3			1						1	1
CO4	2										1	

	SYLLABUS					
Unit No.	Contents					
I	 Conventional and Non-conventional power Generation Introduction - General layout of thermal power plant, working and site selection - General layout of nuclear power plant, working and site selection - General layout and working of hydroelectric power plant, site selection, pumped storage plants - Comparison of thermal and hydel power plants. Introduction to Non-Conventional Sources (elementary treatment only): Solar Energy, wind Energy. Transmission line Parameters Overhead Transmission Lines: Resistance, Capacitance and Inductance calculations for single phase two wire line, three phase line with symmetrical 	CO1 CO1 &				
	spacing for single circuit line, proximity effect and skin effect – numerical problems	CO2				
III	Performance of transmission lines: Classification of Transmission Lines -Short, medium and long lines, Medium lines- Nominal-T, Nominal-Π methods, Long lines-rigorous methods of solution, ABCD constants, regulation, efficiency, Ferranti effect, Surge Impedance loading - numerical problems	CO3				

IVMechanical design of over headlinesTypes of insulators, voltage distribution in suspension-type insulators, String efficiency, Methods of improving string efficiency, tension and sag calculation, effects of wind and ice loading - numerical problems Corona: Formation of corona, Critical voltages, Power loss and factors affecting corona, Merits and Demerits.	CO2 & CO4
 V Economic Aspects and Tariffs Load curve, load duration curve, definition: connected load, average load, maximum demand, load factor, demand factor, diversity factor, plant capacity factor, plant use factor- numerical problems. Tariffs: Base load and peak load stations, load sharing between base load and peak load stations - objectives of tariff, factors affecting tariff, types of tariffs block and stepped tariff – two-part tariff and three-part tariff – Frequency dependent tariff- unscheduled interchange-based tariff, Numerical problems 	CO1, CO3 &

Learning Resources
Text Books:
1. A course in Electrical Power systems, J.B. Gupta – 11 th edition - Kataria Publications.
2. Electric power generation, transmission and distribution, S. N. Singh, 2 nd edition- PHI
Learning
3. Principles of Power Systems, V.K Mehta and Rohit Mehta - S.Chand & Company ltd.
Reference Books:
1. A Text Book on Power System engineering, R.K.Rajput, Laxmi Publication (P) Ltd.

2. Generation, Distribution and Utilization of Electrical Energy, C.L.Wadhwa, New Age International publishers.